STABILITY ANALYSIS IN GEOMECHANICS BY LINEAR
PROGRAMMING. I: FORMULATION

By Poon-Hwei Chuang,! Member, ASCE

ABsTRACT: The limit analysis of stability problems in geomechanics is formulated
as a pair of primal-dual linear programs that encode, respectively, the kinematic
and static limit theorems in a discrete version. The failure surface can take any
arbitrary shape. The soil domain is divided into rigid elements connected by in-
terfacing Mohr-Coulomb layers. For an assumed finite element mesh, the solution
of either linear program identifies the critical collapse mechanism among all the
possible failure mechanisms contained within the mesh, and gives the associated
values of both the static and kinematic variables as well as the critical load param-
eter. This solution is both kinematically and statically admissible for the discretized
system; for the continuum, it is an upper-bound solution. The proposed method
is able to deal with external forces acting on a soil mass with varying pore-water
pressure, and inhomogeneous materials having both cohesion and internal friction.
An illustrative example is presented; this kinematic formulation accurately gives
the upper-bound solution.

INTRODUCTION

For most geomechanical problems involving stability of slopes, bearing
capacity of foundations, or earth pressures on retaining walls, engineers are
primarily concerned with the strength of the soil mass at the collapse stage.
In the theory of plasticity [see e.g. Chakrabarty (1987)], the assumption of
material rigid-perfect plasticity with an associated (or normal) flow rule
allows the calculation of a untque collapse load, which may be bracketed
by the use of two limit theorems even if it cannot be determined exactly.
The static and kinematic theorems of limit analysis have long been exploited
for acquiring lower and upper bounds to the collapse load in geotechnical
engineering problems (Coulomb 1776; Rankine 1857; Proc. 1973; Chen
1975; Salencon 1977). Exact solutions to such problems have not yet been
obtained, except for those for simple bearing-capacity problems. Even though
it is more realistic to assume a nonassociated flow rule (Drucker 1954;
Palmer 1966), solutions adopting the normality assumption have practical
values, because, in many stability problems, the kinematic boundary con-
ditions may be insufficiently restrictive for the nature of the flow rule to
exert an important influence on the collapse load (Davis and Booker 1973;
Zienkiewicz et al. 1975).

Compared with the static approach, the kinematic approach is easier to
use. The most widely used class of methods in engineering practice—the
limit equilibrium methods (LEM)—are only approximately kinematic meth-
ods since most of them assume kinematically inadmissible failure mecha-
nisms and/or violate the yield criterion and the no-tension condition. The
violation of static admissibility is usually minor, and many of the methods
give good estimates for normal slope stability problems [see e.g. Skempton
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and Hutchinson (1969)]. However, when kinematic admissibility is not rig-
orously satisfied, the computed collapse load is not necessarily an upper
bound (Brinch Hansen 1966). Furthermore, in some unusual circumstances,
there are computational difficulties associated with many of the LEM (Whit-
man and Bailey 1967; Ching and Fredlund 1983). Thus, there is a need to
develop an efficient kinematic formulation that satisfies both the kinematic
and the static admissibility for a discretized soil mass.

For limit analysis, the theory of linear programming provides not only
an efficient computational technique but also a convenient conceptual
framework. The two limit theorems can be identified as the dual aspects of
a unique LP problem. Although this mathematical formalism has been suc-
cessfully applied to a wide variety of problems in limit analysis and synthesis
of structural systems (Engineering 1979; Maier and Munro 1982; Maier and
Lloyd Smith 1986), publications on its applications to stability problems in
geomechanics are rather few.

The first contribution was by Lysier (1970), who proposed a static ap-
proach for plane-strain problems. Each nonlinear yield criterion was ap-
proximated by a number of linear constraints; but an increase in this number
considerably increases the computational effort. As a result, the problem
was solved by an iterative sequence of linear programs (LPs) with fewer
constraints (Lysmer 1970). The problem was later reformulated by Zavelani-
Rossi et al. (1974) to improve the computational efficiency.

The linearization of the yield criterion was discarded by some authors,
who opt for nonlinear programming (Frémond and Salencon 1973; Basudhar
et al. 1979). Nonetheless, the nonlinear programming approach lacks the
important feature of the linear programming formulation—the duality that
relates both conceptually and computationally the static and kinematic as-
pects of the problem.

A mixed static-kinematic approach was adopted by Casciaro and Cascini
(1982), who pursued an approximation to the collapse load rather than a
proper bound. However, the stress and velocity fields, while admissible
independently, together may become inadmissible, and spurious oscillations
in the solution for stresses and/or velocities may consequently result (Cas-
ciaro and Cascini 1982).

The foregoing drawbacks associated with the use of the nonlinear yield
criterion and the mixed interpolation do not exist in a kinematic approach
that uses rigid elements together with a linear yield criterion. The formu-
lation to be considered in this paper was suggested by Munro (1982) as an
adaptation of an earlier linear programming model for yield-line limit anal-
ysis of thin plates in bending (Da Fonseca et al. 1977). With plasticity
confined to Mohr-Coulomb layers at the edges of rigid elements, it was
shown that for the fundamental relations to lead to a primal-dual pair of
LPs, it was necessary, inter alia, to have a complementarity condition cor-
responding to the imposition of the associated flow rule. However, in this
formulation, the static and kinematic admissibility necessary for the linear
programming formulation was not achieved, because insufficient degrees of
freedom were assigned to each side of the finite element. Furthermore, one
of the suggested ways of evaluating the safety factor is inappropriate for
frictional materials, and the presence of pore-water pressure was not con-
sidered.

In the formulation by Martins et al. (1981) using a similar approach, each
element appears to be connected to its neighbors by n contact points; but
the authors did not specify the conditions sufficient to achieve the relevant
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static and kinematic admissibility. It is proposed in the present paper that
three degrees of freedom on each element side are necessary and sufficient
to achieve the static equilibrium and kinematic compatibility of a rigid
element.

The purpose of this paper is to develop a kinematic formulation that
satisfies both the static and kinematic admissibility of a discretized soil mass
with varying pore-water pressure, for inhomogeneous materials having both
cohesion and internal friction. The present paper introduces the necessary
adjustments to Munro’s (1982) formulation. A simple example is presented
to illustrate the procedure of using the revised formulation. For the brevity
of this paper, further example problems and investigation of the compu-
tational capacity of this new formulation are presented in a companion paper
(Chuang 1992). Subsequent to the writing of this paper and its companion,
the writer was made aware of a later publication by Martins (1982) that
contains a similar formulation. It appears to have the last two deficiencies
noted in connection with (Munro 1982), and it does not indicate explicitly
the conditions for static and kinematic admissibility.

LINEAR PROGRAMMING FORMULATION

The soil mass is conceived as a continuum under plane-strain conditions.
The domain of interest is divided into rigid elements of triangular or quad-
rilateral shapes, as shown in Fig. 1. These elements are connected at their
interfaces through thin layers of a rigid—perfectly plastic material that obeys
the Mohr-Coulomb yield criterion.

The nodes of the elements, the elements, and the connecting layers are
numbered in some arbitrary manner (Fig. 1). The formulation for triangular
elements is presented in this section; the extension to quadrilateral elements
is straightforward. In Fig. 2, the numbers i, j, k are nodal numbers in
clockwise direction around the element. For element side i, which is opposite
to node i, As; denotes its length, 0; denotes its clockwise rotation from the
horizontal, and H, denotes the height of the triangle measured perpendicular
to this side, as indicated in Fig. 2.

The normal stresses and strains between each Mohr-Coulomb layer and
the connected element edge are concentrated at two contact nodes, each
located at one-third of the layer length (see Figs. 3 and 4). In this paper, a
contact node additional to that in (Munro 1982) is introduced for each
element edge in order to ensure static equilibrium and kinematic compat-
ibility of the rigid element. If the normal stress distribution is assumed to
be linear and the normal forces at the two contact nodes are nontensile,
then nowhere along the layer will the contact stresses be tensile, as required
by the material properties.

FIG. 1. Discretization of Plane Section into Rigid Elements
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FIG. 3. Kinematics of Element m

Kinematics

For the rigid element (see Fig. 3), the displacement rates (A, Aw) of
the element sides can be expressed in terms of the three degrees of freedom
(¢) of the centroid of the element, as given in (la)
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FIG. 4. Statics of Element m

—H,; .
—3—’ —sin 8, —cos 6,
::;ilf —sin §; —cos 8,
—Hy —sin 6, —cos 0,
3
D; — & ~cos 0; sin 0,
3
- (gﬂ _ D,) —cos 6, sin 6,
3
-D, - % —cos §;  sin @,
- (%sz - D,) —cos 6; sin 6;
As
-D, - Tk cos 0, sin 6,
_ <% - Dk> —cos 0, sin 0,

where Ai; = tangential velocity; and Aw} and Aw?
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the two contact nodes along side i. Generally
Au AT

Aw| |Ar

B q

where A7 and AP = matrices of purely geometric properties of the ele-
ment.

Statics

The equipollent tangential (f) and normal (n) forces transmitted from
the element onto the three Mohr-Coulomb layers connected to its edges
are related to the body forces (p), which are applied at the centroid (see
Fig. 4), as given in (2a).
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Generally

| f
[(Aqﬂ)w (A’z")T] [] D (2b)
| n

where superscript 7 = transposed matrix.

The transpose relation linking (1b) and (2b) exhibits the customary static-
kinematic duality (SKD) (Munro and Smith 1972).

The sign convention of the forces [Fig. 5(a)] 1s that normal forces are
considered positive when compressive, and tangential forces positive when
in clockwise sense.

The rigid elements displace when the interfacing layers deform to produce
a plastic collapse mode [Fig. 5(b)]. For compatibility, the deformation rate
of alayer, say numbered /, and the displacement rates of the sides of adjacent
clements numbered m and n (Fig. 6) have the following relations:

U = = Al = Ay oo (a)

S
—
-1
> s e

(a) (b)

FIG. 6. Displacement Rates of Elements Numbered m and n at Adjacent Sides
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WE= —AWL — AW2 (3b)

= AWZ = AWL (3c)

The assembly of all such relations in (3) of the system enables the de-
formation rates (4, w) of all the layers to be linked to the displacement
rates of element sides, and therefore to the generalized displacement rates

@

~N e

w

Analogously, by considering equilibrium between adjacent elements and
the connecting layers, the forces on the Mohr-Coulomb layers (f, n) can be
linked to the element body forces (p)

| f
A{{AZT B T (5)

Again SKD is demonstrated in (4) and (5).

Yield Criterion
The Mohr-Coulomb yield criterion for layer [ is

C
fil =5+ @int + D) = @b+ Grd) (6)

where C; = integral of the cohesion along layer /. The coefficient {} is
defined as {; = (tan &/%)/F, where ¢;* = angle of internal friction in terms
of effective stress at contact node i of layer [, = 1,2; and F = a reduction
factor (which is identical to the conventional safety factor in LEM); ri =
integral of the pore pressure along that half of the layer length As,, which
is tributary to contact node i, as shown in Fig. 5(a). Let

b, E% (4 & S @)
then inequality (6) can be rearranged as
il = (@n} + D) b, oo 8)
For all such layers

E—Znsb ... (9a)
—f—Zn=b ... (9b)
where Z = diag[(g}, i, - (@€nL LD, .., (L D], L = total number

of layers; n = 0 since no tension is allowed.
In a compact form

[_::;] H = [ H ......................... (100



where I = identity matrix.

Let body forces p consist of two components: fixed loads p,and activating
forces p, = Ap,, where A = load parameters, and p, are the activating
forces associated with a unity value of the parameter. Combining (5) and
(10), the following static admissibility conditions are obtained.

I G/ Nl=To T o (11a)
oL -7 Tl =|p | (11b)

P L AT =AT | | m = - | (11c)
n = 0 (11d)

which give the equalities

R G / Ao+ s = b oo (12a)
o1 o~z || r s b
p, | Al —Al| |n P
st=0; s =0, n=0 ................. (12b)
where s* and s~ = slack variables; and the dot entry (-) indicates a zero

vector.
The mechanism deformation rates will be restricted to finite magnitudes
through the convenient normalization in (13)

PIA = 1 oo e (13)

Flow Rule

The associated (or normal) flow rule ensures that the relative displace-
ment rate vector of the plasticized layer is normal to the yield locus (Munro
1982). Let the tangential deformation rates (i) be expressed in terms of
nonnegative components

By = T = B oo e et (14a)

ur =05 07 =0 e (14b)
The flow rule gives, at the two contact nodes of layer /

Wi —CHa Fur)=0 o (15a)

—WP - CHur Fur) =0 (15h)

For all such layers

W o ZTAT A W) 20 (16)

Collecting (14) and (16), we have

I -1 Wt o= e (17a)
[T'z"r':'"'—"i}} [ } M ......................... (175)
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The transpose relation linking (10) and (17) arises directly from the nor-
mality relation connecting the yield criterion with the flow rule.
After substituting (4) into (17), we have

I | ~-I | —A ut = S [ (18a)
[—ZT VT —AJ a | = [} ............. (18b)
Ut =0 0T =0 e (18¢)
Assembling (13) and (18), we have the kinematic admissibility conditions
Y4 at | = 1| (19a)
I | -1 ! —A, a | = [ (195)
—ZT ' —ZT | —A, al=1"""1 ............. (19¢)
Y =0; 0 =0 ... (19d)
which give the equalities

S 4 TR - =11 .. (20a)

I ! —1 | —A a || |

—ZT ) CIT L —A, q I
at =0, v =0; =0 .......... ... ... (20b)

where o0 = surplus variables.

The two sets of conditions (12) and (20) are linked by a complementarity
relation (the parity rule), which ensures admissible combinations of static
and kinematic solutions. For layer /

ST = 0 (21a)
ST T = 0 e (21b)
G = 0 (21¢)
For all layers, the system parity rule is

AT + (s H)u +nfo=0 ... (22)

The complete set of fundamental geomechanical relations for the system
at plastic collapse—namely (12}, (20), and (22)—can now be assembled in
the form of a linear complementarity problem (LCP)
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- e Y -1 1-T1 ! ]
1 -1 oA e |

T IO U T ey

B L ez N e st = b

O I R T s b

Vo B S T

(sH)Ta* + (s7)a + nfo =0

8T =0; s =0, ut=0, @ =0; n=0;, =0

The solution of LCP (23), according to Karush-Kuhn-Tucker (KKT) theory
(Zangwill 1969), can be obtained through either of the primal-dual LPs,
(24) and (25)

[
minimize Z = [b”! b7! — pF] | a-
Q]
.' copr | [ ] = 1
I -1 -A a = ] (24)
T | -
at =0, u =0

(primal linear program). And

[\
maximize W = [L'-!-]1 | f
S
| 1 -2 [ A ] = b
T T = | T -
p. | —AT | —AT o _ _:_l_);_

(dual linear program).
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These primal-dual LPs establish, in a discrete version, the kinematic and
static limit theorems, respectively, for stability analysis in geomechanics
(Drucker and Prager 1952; Drucker et al. 1952). The limit theorems are:
(1) Kinematic theorem—the soil mass will collapse if there is any compatible
pattern of plastic deformation for which the rate of work of the external
loads exceeds the rate of internal dissipation; and (2) static theorem—if an
equilibrium distribution of forces can be found that balances the applied
load and nowhere violates the yield criterion that includes ¢’ and ¢', the
soil mass will not collapse or will be just at the point of collapse.

For any assumed finite element (FE) mesh, the plastic deformations are
confined to the Mohr-Coulomb layers, while the interior of the elements
remains undeformed plastically. The optimal solution of the LPs is the
complete solution that is both kinematically and statically admissible to the
discretized system; it is an upper bound to the complete (or exact) solution
of the continuum. These two solutions will be identical provided that the
actual collapse mechanism is contained within the FE model. Thus, the
accuracy of the solution can be greatly enhanced by a judicious choice of
the FE mesh.

ExAaMPLE

A very simple example is used to illustrate the assembly of the relevant
matrices for LPs (24) and (25), and to validate the linear programming
formulation. Fig. 7 shows a vertical cut of a purely cohesive, weighty ma-
terial. The greatest height that the cut can stand under its own weight without
collapsing plastically is to be determined by evaluating the nondimensional
parameter yH/c,. If the height H and the undrained cohesion c, are assumed
unity, the problem is reduced to finding the maximum value of the unit
weight vy subject to static admissibility conditions.

The domain is discretized into two triangular elements by two potential
slip lines. The nodes, layers and elements are numbered as in Fig. 7. To
minimize the data for this illustrative example, the correct sense of the
generalized displacement rates (as shown in Fig. 8), and of the tangential
deformation rates of the layers (i.e. anticlockwise as shown in Fig. 9) is
imposed, and this enables one to treat the decision variables u, f and q, p
as nonnegative.

Kinematics
Element 1 is attached to only one Mohr-Coulomb layer; hence only one
element side need be considered. From the geometry of the element [Fig.

0.9 01
—2
1 24
He1 @ Material Properties
B @ cu=1
¢u=°
3 v to be determined

FIG. 7. Description of Problem
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(a) (b)

FIG. 9. Relation between Element-Side Displacement Rates and Deformation Rates
of Layer 1

8(a)], the displacement rates of side 1 can be expressed in terms of the
generalized displacement rates of element 1 using (1a)

[ Ad, —-0.2230  0.7433 0.6690 | [ 4,
Awi| =1 02007 —0.6690 0.7433 | |go| ..oovooii .. (26)
| Aw? —0.2478 —0.6690 0.7433 | | g5

Similarly, for element 2, which is bounded by two layers [Fig. 8(b)]

™ Au, —0.0236  0.7071  0.7071] [4,
Au, _I —0.0248 —0.7433 — 0.6690—I ds
Awl o _ | 00236 —0.7071 07071 ! | g, @
AW3 —0.4478 —0.7071 07071 | = = e
AW} 0.4708  0.6690 —0.7433
| A2 0.0223  0.6690 —0.7433
1709




The deformation rates of layer 1 are related to the displacement rates of
side 1 of element 1 and side 4 of element 2 (Fig. 9) in the following way.

= Ay + Ally (28a)
wi= —Awl — AW3 (28b)
wi= —AWwE — AWl (28¢)
and for layer 2

Uy = Al oo (29a)
Wi = —AWL (29b)
W3 = —AWZ (29¢)

After assembly of relations (28) and (29), the deformation rates (i1, w) of
the two layers may be related to the element side displacement rates and
hence to the generalized displacement rates (¢) using (26) and (27)

i | =] -0223  0.7433 0.6690 —0.0248 —0.7433 —0.6690 @
i 0 0 0 -0.0236  0.7071  0.7071 @
i N R 43
wl —0.2007 0.6690  —0.7433 —0.0223 —0.6690  0.7433 4.
W} +0.2478  0.6690  —0.7433 —0.4708 —0.6690  0.7433 gs
Wl 0 0 0 -0.0236 07071 —0.7071 ds
Wi 0 0 0 0.4478 07071 —0.7071
.......................................................... (30)
Symbolically
u Al q
e I I (31)
Statics

The forces on the layers can be linked to the body forces of the elements
through the system equilibrium equations

f
- [A;!' A;} H ...................................... o0
n

where

DY = [PiPaPaPalsPel o (32b)
7 = [fi o] (32¢)
n" = [nlnindnd] oo, (32d)

Yield Criterion

Since the maximum v is to be assessed from the total available shear
strength, the reduction factor (or safety factor in LEM) F is unity. The
undrained cohesions ¢, of the two Mohr-Coulomb layers are both assumed

1710



to be unity, and lengths of the two layers are As; = 1.3454; As, = 1.4142.
Hence, C;, = 1.3454; C, = 1.4142; and from (7) we have

b7 = [1.3454 1.4142] .. ... ... (33)

Since &, = 0; Z = a 2 X 4 null matrix.

The self-weight of the soil mass will be considered as the ‘“‘activating
force,” and the unit weight of the material is used as the load parameter
A. Therefore the body forces of element i are

pPP=p:+ Ap, =0+ 170
Vil o (34)

0

where V; = volume of element i,i = 1, 2; V, = 0.45; V, = 0.05 for unit
thickness of the cut. For the whole system

Pr= 0 (35a)
pI=10 045 0 0 005 0] ...ttt (35h)
The compact primal program takes the form of LP (36)
minimize Z = [b”  —p/] u
s
. pJ u = 17 |.ccoiiii. (36)
EHES
7T —A, > .
=0, q=0

-
maximize W = [1- ! - ! ] f
n
I -7 AT - LI (37)
b AT -ar | t] S e
_n_
f=0;, n=0

By introducing, where necessary, surplus, slack, or artificial variables,
the LPs are converted to the standard form such that the simplex algorithm
can be applied. Rough estimates of the relative computational effort can
be made on the assumption that the effort varies as the product of the
number of variables and the cube of the number of constraints (Munro
1979). For this example problem, since the compact primal program requires
less computational effort than the compact dual program, the solution will
be obtained through the former.

The optimal solution of LP (36), together with the static solution via
simplex multipliers, is A = 4; f; = 1.3379; f, = 1.4142; n; = ny; = 0; n,
= 1.2041; n, = 1.4142; 4, = 0; 1, = 2.8284; G, = ¢, = 0, g2 = ¢5s = 2;
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and ¢; = ¢s = 2. The computed slip line is along layer 2, which intersects
the free boundary at an angle of 45°. The computed critical value of the
parameter yH/c, = \ is 4, which is the reciprocal of Taylor’s (1948) stability
number (¢ = 0°) for a plane slip surface, i.e. ¢,/(yH) = 0.25. This value
can also be obtained by equating the rates of internal and external work
when layer 2 is considered as the slip line. This is the unique solution to
the discretized soil mass and is an upper-bound solution to the continuum.

This example presents a procedure of manually calculating the matrices
in LPs (24) and (25) for illustrative purposes. For practical use of the present
method, a computer program has been written, which can handle both
triangular and quadrilateral elements to build up automatically the dual
linear program (25) [the primal program (24) can be easily obtained by
transposing the matrices]. Only basic input data are required. A numerical
algorithms group (NAG) library routine, which encodes the revised simplex
algorithm, is utilized to solve the LP.

The simplicity of the example enables the underlying concepts to be clearly
illustrated. In Chuang (1992), the present method is successfully applied to
a range of problems in bearing capacity and slope stability in which the
failure surfaces have various different shapes, for cohesive and frictional
materials possessing homogeneous and inhomogeneous properties, external
forces acting on the soil mass with varying pore pressure, and tension cracks
filled with water.

CONCLUSIONS

The limit analysis of stability problems in geomechanics has been suc-
cesstully formulated as a pair of primal-dual linear programs, which encode,
respectively, the kinematic and static limit theorems in a discrete version,
for rigid-perfectly plastic materials with a piecewise linearized yield locus
and an associated flow rule. A general computer program has been devel-
oped, which makes the present method simple to implement. '

For an assumed FE mesh, the solution of either linear program identifies
the critical collapse mechanism among all the possible failure mechanisms
contained within the given mesh, and gives the corresponding values of both
static and kinematic variables, together with the critical load parameter.
The profile of the critical failure surface is selected by the program auto-
matically as part of the solution. This is the solution, which is both kine-
matically and statically admissible, to the discretized system; for the con-
tinuum, it is an upper-bound solution.

This method could readily give the exact solution to the stability analysis
of a rock mass with multiple planes of weakness. It may also be extended
to the seismic analysis of stability by including statically equivalent horizontal
and vertical seismic forces.

The present method provides the solutions accurately for given values of
cohesion and angle of internal friction. The shear-strength parameters of
soils are usually approximately known. Sensitivity analyses of dual LP (25)
can be carried out to determine the variation of the results due to small
changes in the assumed strength parameters. If engineering judgments are
available to be incorporated in the assessment of soil properties, fuzzy
mathematical programming (Chuang and Munro 1983; Chuang et al. 1986;
Munro and Chuang 1986) can be utilized for the stability analysis. Hence
engineering decisions can be made based on a better understanding of the
problem.
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APPENDIX Il. NOTATION
The following symbols are used in this paper:

T, A7 = element matrices transforming § to Au and Aw, re-
spectively;

A;, A, = matrices transforming q to & and W, respectively;
b, = G/F — (Lir} + {3r9);
C, = integral of cohesion along layer /;

¢, = undrained cohesion;
F reduction factor;

I
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R R SR

Po

vector of tangential forces on Mohr-Coulomb layers;
height of element measured perpendicular to side i;
identity matrix;

total number of layers;

vector of normal forces on Mohr-Coulomb layers;
vector of body forces of elements;

(ps + A po);

vector of activating forces;

ApP,;

vector of fixed load component of p;

vector of activating forces associated with unit value of \;
vector of degrees of freedom of centroids of elements;
integral of pore pressure along half of layer / for contact
nodei,i =1, 2;

= vectors of slack variables;

|

i monn

I

vector of tangential deformation rates of layers;
ut — a7,

vectors of nonnegative components of u;

vector of normal deformation rates of layers;
diag [}, &), . -, @5 O3), - - - » (EL, E)];

unit weight of soil;

length of element side i that is opposite to node i;
length of interfacing layer /;

tangential displacement rate of side i of element;

= normal displacement rates at two contact nodes along side

i of element;

(tan ¢ ¥)/F;

clockwise rotation from horizontal axis of side i;

load parameter;

vector of surplus variables; and

angle of internal friction in terms of effective stress at
contact node i of layer [, i = 1, 2.

1715



